Docker for Node.js Developers: 5 Things You Need to Know Not to Fail Your Security


Jul 13 2021

Guest post by Liran Tal, Snyk Director of Developer Advocacy 

Docker is totalling up to more than 318 billion downloads of container images. With millions of applications available on Docker Hub, container-based applications are popular and make an easy way to consume and publish applications.

That being said, the naive way of building your own Docker Node.js web applications may come with many security risks. So, how do we make security an essential part of Docker for Node.js developers?

Many articles on this topic have been written, yet sadly, without thoughtful consideration of security and production best practices for building Node.js Docker images. This is the focus of my article here and the demos I shared on this recent Docker Build show with Peter McKee. 

Before we jump into the gist of Docker for Node.js and building Docker images, let’s have a look at some frequently asked questions on the topic.

How do I dockerize Node.js applications?

Running your Node.js application in a Docker container can be as simple as copying over the project’s directory and installing all the required npm packages, but there are many security and production related concerns that you might miss. These production-grade tips are laid out in the following guide on containerizing Node.js web applications with Docker, which covers everything from choosing the right Docker base image and using multi-stage builds, to managing secrets safely and properly enabling production-related framework configuration.

This article focuses on the information you need to better understand the impact of choosing the right Node.js Docker base image for your web application and will help you find the most secure Docker image available for your application.  

How is Docker helpful for Node.js developers?

Packaging your Node.js application in a container allows you to bundle your complete application, including the runtime, configuration and OS-level dependencies, and everything required for your web application to run across different platforms and CPU architectures. These images are bundled as deployable artifacts called container images. These Docker images are software-based bundles enabling easily reproducible builds, and give Node.js developers a way to run the same project or product in all environments. 

Finally, Docker containers allow you to experiment more easily with new platform releases or other changes without requiring special permissions, or setting up a dedicated environment to run a project.

1. Choose the right Node.js Docker base image for your application

When creating a Docker image for a Node.js project, we build our own application image based on another Docker image, which we pull from Docker Hub. This is what we refer to as the base image. The base image is the building block of the new Docker image you are about to build for your Node.js application.

The selection of a base image is critical because it significantly impacts everything from the Docker image build speed, as well as the security and performance of your web application. This is so critical Docker and Snyk co-wrote this practical guide focused on container image security for developer teams

It’s quite possible that you are choosing a full-fledged operating system image based on Debian or Ubuntu, because it enables you to utilize all the tooling and libraries available in these images. However, this comes at a price. When a base image has a security vulnerability, you will inherit it in your newly created image. Why would you want to start off on bad terms by defaulting to a big base image that contains many vulnerabilities?

When we look at the base images, many of the security vulnerabilities belong to the Operating System (OS) layer this base image uses. Snyk’s 2019 research Shifting Docker security left, showed that the vulnerabilities brought in by the OS layer can vary largely depending on the flavor you choose.

2. Scan your Node.js Docker image during development

Creating a Docker image based on other images, as well as rebuilding them can potentially introduce new vulnerabilities, but there’s a way for you to be on top of it.

Treat the Docker image build process just like any other development related activity. Just as you test the code you write, you should test the Docker images you build. 

These tests include static file checks—also known as linters—to ensure you’re avoiding security pitfalls and other bad patterns in your Dockerfile. We’ve outlined some of these in our Docker image security best practices. If you’re a Node.js application developer you’ll also want to read through this step-by-step 10 best practices to containerize Node.js web applications with Docker.

Connecting your git repositories to Snyk is also an excellent choice. Snyk supports native integrations with GitHub, GitLab, Bitbucket and Azure Repos. Having a git integration means that we can scan your pull requests and annotate them with security information, if we find security vulnerabilities. This allows you to put gates and deny merging a pull request if it brings new security vulnerabilities.

If you need more flexibility for your Continuous Integration (CI), or a closely integrated developer experience, meet the Snyk CLI.

The CLI allows you to easily test your Docker container image. Let’s say you’re building a Docker image locally and tagged it as nodejs:notification-v99.9—we test it as follows:

  1. Install the Snyk CLI:
    $ npm install -g snyk
  2. Then let the Snyk CLI automatically grab an API token for you with:
    $ snyk auth
  3. Scan the local base image:
    $ snyk container test nodejs:notification-v99.9

Test results are then printed to the screen, along with information about the CVE, the path that introduces the vulnerability, so you know which OS dependency is responsible for it.

Following is an example output for testing Docker base image node:15:

✗ High severity vulnerability found in binutils
  Description: Out-of-Bounds
  Info: https://snyk.io/vuln/SNYK-DEBIAN9-BINUTILS-404153
  Introduced through: dpkg/dpkg-dev@1.18.25, libtool@2.4.6-2
  From: dpkg/dpkg-dev@1.18.25 > binutils@2.28-5
  From: libtool@2.4.6-2 > gcc-defaults/gcc@4:6.3.0-4 > gcc-6@6.3.0-18+deb9u1 > binutils@2.28-5
  Introduced by your base image (node:15)

✗ High severity vulnerability found in binutils
  Description: Integer Overflow or Wraparound
  Info: https://snyk.io/vuln/SNYK-DEBIAN9-BINUTILS-404253
  Introduced through: dpkg/dpkg-dev@1.18.25, libtool@2.4.6-2
  From: dpkg/dpkg-dev@1.18.25 > binutils@2.28-5
  From: libtool@2.4.6-2 > gcc-defaults/gcc@4:6.3.0-4 > gcc-6@6.3.0-18+deb9u1 > binutils@2.28-5
  Introduced by your base image (node:15)



Organization:      snyk-demo-567
Package manager:   deb
Target file:       Dockerfile
Project name:      docker-image|node
Docker image:      node:15
Platform:          linux/amd64
Base image:        node:15
Licenses:          enabled

Tested 412 dependencies for known issues, found 554 issues.

Base Image  Vulnerabilities  Severity
node:15     554              56 high, 63 medium, 435 low

Recommendations for base image upgrade:

Alternative image types
Base Image                Vulnerabilities  Severity
node:current-buster-slim  53               10 high, 4 medium, 39 low
node:15.5-slim            72               18 high, 7 medium, 47 low
node:current-buster       304              33 high, 43 medium, 228 low

3. Fix your Node.js runtime vulnerabilities in your Docker images

An often overlooked detail, when managing the risk of Docker container images, is the application runtime itself. Whether you’re practicing Docker for Java, or you’re running Docker for Node.js web applications, the Node.js application runtime itself may be vulnerable.

You should be aware and follow Node.js security releases and the Node.js security policy. Instead of manually keeping up with these, take advantage of Snyk to also find Node.js security vulnerabilities.

To give you more context on security vulnerabilities across the different Node.js base image tags, I scanned some of them with the Snyk CLI and plotted the results in the following logarithmic scale chart:

You can see that:

  1. The default node base image tag, also tagged as node:latest, bundles more than 500 security vulnerabilities, but also introduces 2 security vulnerabilities in the Node.js runtime itself. That should worry you if you’re currently running a Node.js 15 version in production and you didn’t patch or fix it.
  2. The node:alpine base image tag might not be bundling vulnerable OS dependencies in the base image—this is why it’s missing a blue bar—but it still has a vulnerable version of the latest Node.js runtime (version 15).
  3. If you’re running an unsupported version of Node.js—for example, Node.js 10—it is vulnerable and you can see that it is not receiving any security updates.

If you were to choose the Node.js version 15, which is the latest version released, at the time of writing this article, you would  actually be exposing yourself not only to 561 security vulnerabilities within this container, but also to two security vulnerabilities in the Node.js runtime itself.

We can see the Docker scan test results found in this public image testing URL: https://snyk.io/test/docker/node:15.5.0. You’re welcome to test other Node.js base image tags that you’re using with this public and free Docker scanning service: https://snyk.io/test.

Security is now an integral part of the Docker workflow, with Snyk powering container scanning in Docker Hub and Docker Desktop. In fact, if you’re using Docker as a development platform, you should review our Snyk and Docker Vulnerability Cheatsheet.

If you already have a Docker user account, you can use it to connect to Snyk and quickly import your Docker Hub repositories with up to 200 free scans per month. 

4. Monitor your deployed Docker images for your Node.js applications

Once you have Docker images built, you’re probably pushing them to a Docker registry that keeps track of the images, so that these can be deployed and spun up as a functional container application.

Why should we monitor Docker base images?

If you’re practicing all of the security guidelines we covered so far with scanning and fixing base images, that’s great. However, keep in mind that new security vulnerabilities get discovered all the time. If you have 78 security vulnerabilities in your image now, that doesn’t mean you won’t have 100 tomorrow morning when new CVEs are reported and impact your running containers in production. That’s why monitoring your registry of container images—those that you’re using to deploy containers—is crucial to ensure you will find out about security issues soon and can remediate them.

If you’re using a paid Docker Hub registry for your images, you might have already seen the integrated Docker security scanning by Snyk in Docker Hub. 

You can also integrate with many Docker image registries from the Snyk app directly. For example, you can import images from Docker Hub, ACR, ECR, GCR, or Artifactory and then Snyk will scan these regularly for you and alert you via Slack or email about any security issues found:

5. Follow security guidelines and production-grade recommendation for a secure and optimal Node.js Docker image

Congratulations for keeping up with all the security guidelines so far!

To wrap up, if you want to dive deep into security best practices for building optimal Docker images for Node.js and Java applications, check out these resources:

  1. 10 Docker Security Best Practices – detailed security practices that you should follow when building Docker base images and when pulling them too, as it also introduces the reader to Docker content trust.
  2. Are you a Java developer? You’ll find this resource valuable: Docker for Java developers: 5 things you need to know not to fail your security.
  3. 10 best practices to containerize Node.js web applications with Docker – If you’re a Node.js developer you are going to love this step by step walkthrough, showing you how to build secure and performant Docker base images for your Node.js applications.

Start testing and fixing your container images with Snyk and your Docker ID.