
Securing Developer
Workstations with
Docker

2

Introduction

Cyber attackers are finding new ways to breach companies everyday. The number of security breaches
and the cost to mitigate the fallout is escalating quickly. In 2021 the average cost of a US breach grew
to more than $9.4M.

It’s not just production environments that are under increased attack, it’s test and increasingly develop-
ment environments (e.g., a software developer’s laptop). The reason is simple: humans are often the
weakest link in a company’s security chain.

In 2021 alone, 80% of cyber security breaches were due to human error and 20% involved attacks on
desktop and laptops [1]. Whether this is accidental (bugs and misconfigurations) or on purpose (at-
tempting to relax or bypass organization security settings), it increases the risk of a breach. Per Trend-
Micro, “If an attacker successfully compromises your build server, code repository, or developer work-
stations, they can reside in your environment for significantly longer.” [2]

We’ve seen this play out in the real-world with recent supply chain attacks with malicious NPM pack-
ages, in which attackers create malicious packages that resemble legitimate ones (both in name and
functionality) which developers then download and run in their workstations. These packages then
install malware on the host machine to exfiltrate sensitive data, move laterally within the company’s
network, etc. [7] These aren’t isolated events, in 2021, we witnessed supply chain attacks grow by over
300% [3].

These breaches show that security is needed at every step of the development lifecycle, starting with
the developer’s environment (e.g., laptops, virtual desktops, etc.).

This document describes some security risks in developer environments that use containers (e.g., a
developer’s laptop with a container engine installed), and how Docker Desktop can help to better secure
them.

Security Risks in Container Development Tools

Container development tools (such as Docker Desktop and similar) enable users to package and run
software inside containers, prior to deploying these in CI and production environments.

While running software inside containers is generally more secure than running it natively on a host
(due to the container’s reduced attack surface and host isolation), container development tools still
need to be properly secured to reduce the risk of security breaches in the developer’s environment.

We’ve identified five main threats associated with these tools:
1. Malware Attacks

2. Supply Chain Attacks

3. Local Admin Rights

https://www.ibm.com/reports/data-breach
https://www.ibm.com/reports/data-breach

3

4. Misconfigurations

5. Insider Threats

Malware Attacks

Malware attacks continue to gain prevalence and account for over 30% of cyber security breaches in
2021 [1].

In the context of container dev environments (e.g., a developer’s laptop where Docker is installed), mal-
ware attacks most commonly occur when developers inadvertently download a malicious container
image in their local machine and run it, or when a developer exposes the container engine API on the
network without protection.

TechTarget reports that over one thousand malicious NPM packages have been detected, while Trend-
Micro reports malicious container images posing as popular Alpine images and Aqua reports a similar
thing for OpenJDK and Golang base images. In addition, SysDig also reports on the perils of exposing
the container engine API on the network without authentication.

Mitigating malware in containers is important because not only can it execute harmful activities within
the container (e.g., cryptomining), but can also try to gain access to the host’s file system and network.
Such access can occur when developers mount host files into the container (a common practice in dev
environments) or when they run the container with elevated privileges.

Once the malware gains access to the host filesystem and network, it can exfiltrate sensitive data and
credentials, use those to access private company repositories, attack other hosts on the same network,
and more.

In some cases it’s even possible for the malicious container to get access to the container engine. This
can happen when developers expose the engine’s API on the local host without protection (i.e., without
TLS), or when they mount directories such as “/var”, “/bin”, “/run” into the container. This gives the mali-
cious container access to the container engine’s socket which it can use to pull private images, inspect
them, create corrupt images, push them to repositories, etc.

There are several ways to mitigate malware threats to containers in dev environments:

• Ensuring container images come from trusted sources and are verified.

• Isolating containers from the developer’s host machine.

• Isolating containers from the container engine.

• Isolating containers from each other.

• Restricting what host files can be shared with containers.

• Restricting host network access to containers.

• Never exposing the container engine API on the network without authentication.

• Ensuring the container dev environment is up to date.

https://www.techtarget.com/searchsecurity/news/252512799/More-than-1000-malware-packages-found-in-NPM-repository
https://www.trendmicro.com/vinfo/it/security/news/virtualization-and-cloud/malicious-docker-hub-container-images-cryptocurrency-mining
https://blog.aquasec.com/supply-chain-threats-using-container-images
https://blog.aquasec.com/supply-chain-threats-using-container-images
https://sysdig.com/blog/triaging-malicious-docker-container/

4

Ideally, every container dev tool should offer all of the above. Taking it one step further, the tool should
also allow IT admins to pick and choose which of these to enforce on developers’ workstations, but do
so in a way that does not impact developer experience and productivity.

Supply Chain Attacks

Recent supply chain attacks such as Log4shell, SolarWinds, and Co-
deCov have had a massive impact on organizations worldwide, un-
derscoring the increasing risk posed by an insecure supply chain. In
fact, supply chain attacks grew by over 300% in 2021. This is likely due
to the economies of scale for attackers: a single vulnerability in a key
supply chain software component can result in thousands of impacted
systems.

In the context of container dev environments, supply chain attacks can occur in a variety of ways:

• Developers inadvertently pull a malicious package into a container (e.g., malicious NPM packages [7]).

• Developers use a compromised or vulnerable container image as a layer in other images they create.

• Malware infects a developer’s container dev environment (see prior section) and covertly inserts vulner-

abilities into artifacts created by the developer. For example, if malware gains control over the container

engine, it can push malicious images to the company’s repository or even corrupt image builds created

by the developer.

Attackers are increasingly using techniques such as typosquatting [5] and dependency confusion [10]
of package and container image names to trick developers into downloading malicious containers or
packages..

and regulatory jeopardy. Therefore mitigating such attacks in developer environments is critical. This in-
cludes ensuring only trusted container workloads are run and, in case an attack still does occur, limiting
the blast radius. Here’s what you can do to achieve this:

• Ensure developers can only pull images from trusted sources / registries.

• Constantly scan the container images used and produced by developers.

• Give containers least privilege.

• Avoid storing secrets inside container images.

• Mount as few host directories as possible into the containers, particularly those that contain sensitive

data (e.g., avoid mounting the user’s $HOME directory since it contains SSH keys).

• Mount directories with read-only permissions (as opposed to read-write).

• Harden container isolation in the dev environment (to prevent container access to the Linux host and the

container engine).

Also, IT admins should have the ability to set and enforce security settings in developer workstations,
such as the container registries and images that developers can access.

300%
Increase in supply

chain attacks in 2021

5

Local Admin Rights

Giving developers local admin rights on their machines might make them happy, but if their workstation
is not configured securely per company policies, this can quickly lead to attackers compromising these
machines and from there, the organization’s network. With local admin rights, developers can relax fire-
wall rules, turn off anti-malware software, disable updates, and install untrusted software.

Ideally there should be a balance where developers are able to perform any legitimate action without
local admin rights on their workstation, and IT/systems admins have the ability to apply and enforce
security settings on the developer’s workstation. The goal is to secure without impacting developer
experience or productivity.

These tools should allow developers to do their job (e.g., launch containers, build images, upload imag-
es) using standard local machine accounts, while at the same time giving admins the ability to config-
ure and enforce security controls, such that they can’t be relaxed without authorization.

Misconfiguration

Container dev tools give developers a wide range of configuration options, even without local admin
rights. Misconfiguring these can result in non-compliance of policy and increased security threats. In
2021, ~7% of cyber security breaches were due to misconfiguration [1].

Misconfigurations happen because most container dev tools give developers full control over the
configurations and settings of the tool. Even if an IT admin initially configures the tool’s settings per the
company’s security policy, a developer can always modify these settings at will. In other words, miscon-
figurations occur when there is no centralized or mandatory organizational control over the tool’s secu-
rity settings.

For example, within Docker Desktop developers can change a large number of settings such as the net-
work proxy config, host file sharing, host resource usage, Docker engine config, software updates, etc.
This gives developers great flexibility.

However, a few of these settings can increase security risks and in some organizations that risk out-
weighs the benefit. An incorrect configuration (e.g., disabling the network proxy or disabling software
updates) may result in developers opening the door for attacks on their workstation and compromising
the entire organization.

Organizations that operate with strict security requirements or at scale need a mechanism that allows
IT admins to configure and enforce some security settings in container dev tools, but leave other set-
tings at the discretion of the developers to prevent negative impacts to developer experience and pro-
ductivity. Developers should be able to configure their container development environment in the way
that best suits them, while at the same time being restricted from relaxing important security settings
set by IT admins.

6

Insider Threats

Threats don’t always come from external parties. Malicious insiders are a growing and real concern
with 20% of all breaches in 2021 caused by internal actors [1]. Development tools are a prime target for
these malicious insiders because they can be leveraged to perform malicious activities disguised as
legitimate ones given what these tools can do.

Once they’ve compromised your systems, these insiders will try to bypass company security policies to
exfiltrate confidential company data, run disallowed software, download malware, or even intentionally
introduce vulnerabilities.

For container development tools in particular, this could mean pulling malicious images, running them
in the developer’s environment (which may go undetected by anti-malware software since these tools
typically run containers inside a virtual machine), pushing corrupt container images to an organization’s
repositories, etc.

Securing container dev tools against insider threats requires that IT/system admins be able to enforce
organizational security policies on these tools so that these can’t be used to perform hostile activities.

7

Threat Paths

ve. These apply to all contain-
er dev tools. They assume, however, that containers inside a Linux VM (as Docker Desktop and other
tools do in order to run containers on Mac or Windows hosts).

The diagram is read from bottom-to-top, and the white boxes represent the threat action while the blue
boxes represent the end result.

Figure 1. Container Dev Tool Threats Paths

Inject malicious code
into SCM

Access to
SCM with the
developers
permission

Unprotected
credentials used

for the SCM present
on the host filesystem

Subvert code review
processExfiltrate source code

Download
malware to host

Access to host
filesystem

Host filesystem
mounted in VM

Container
escape through

misconfiguration

Run a container with
elevated privileges or
sensitive VM mounts

Run
malicious
container

Developer
inadvertently

pulls malicious
container image

Load malicious image
from tar archive

Container engine API
exposed on network

without authentication

User visits
malicious URL

Access exposed
container engine

API from inside
a container

User visits
malicious URL

Exploit
exposed

container
engine API

Kernel
exploitation

Kernel vulnerability

Container
escape
to VM

Download
malware to VM

Extract secrets from
host filesystem

Changes to host
filesystem

Unauthorized
access/exfiltration of

data

Compromise the
integrity of subsequent
container runs or builds

Interact with local
network on behalf of

the host

Access to
container

registries as
the user

Exfiltrate images form
private repositories

Push poisoned image
into repository

8

Docker Desktop Security Features and Limitations

Docker Desktop includes important baseline security features to protect against most of the threats
described in the prior section. This section outlines these baseline security features and their limita-
tions. In the following section we introduce a new security feature created by Docker to overcome
these limitations.

Baseline security features include:

• Allowing regular users to run containers (no admin rights needed).

• Running all containers in a Linux Virtual Machine (VM) to isolate them from the underlying Mac/Win-

dows/Linux host.

•

•

• Tight integration with Docker Hub for access to private repositories, automated image scanning, Docker

These baseline security features are all available in Docker Desktop and most other free container
development tools. However, they have some important limitations (and these apply to other container
development tools too):

• Security controls are discretionary. They are built so that individual developers can modify them and

-

er threats when used in an enterprise setting. An unaware or careless developer, or a malicious insider,

could relax these settings and put the organization at risk.

• Container-to-host isolation is strong by virtue of running the containers inside a Linux VM. However,

within the Linux VM, container isolation can easily be relaxed or bypassed (see below), opening the door

for malware or supply chain attacks to subvert the VM and the container engine within it.

For example, if a developer inadvertently runs a malicious container image with elevated privileges (e.g.,
“docker run --privileged”) or shares namespaces (e.g., “docker run –pid=host”), the malicious container
now has root access to the Linux kernel in the VM. The container can use this to subvert security con-
trols within the VM.

Even without elevated privileges, if the developer exposes sensitive VM directories to the malicious
container (e.g., “docker run -v /var:/mnt” or “docker run -v /bin:/mnt”), the malware can also install itself
in the VM or take control of the container engine within it.

9

Figure 2 illustrates this.

Figure 2. Possible ways to compromise the Docker Desktop Linux VM

•

shared with the container.

• Taking control of Docker Engine (whose socket is available inside the VM at “/var/run/docker.sock”) and

leveraging it to pull more malware, build and push malicious images, etc.

• Modifying the binaries for Docker Engine or other programs inside the VM. This compromises the integ-

rity of subsequent runs or builds, leading to supply chain attacks within the organization.

• Pushing code changes to GitHub and subverting code review process in case of improper authenti-

cation. For example, if a user shares their host’s $HOME directory, a malicious container that gained

access to the Linux VM could steal the SSH private key and compromise access to GitHub and similar

services.

• Utilizing the interfaces between the container tool and the VM to attack the host or modify settings

stored in the VM without the developer’s knowledge.

• -

ing a dynamic link library (DLL) sideloading attack by writing a malicious DLL, etc.)

•

• Interacting with the local network on the developer’s behalf in order to perform reconnaissance and

identify further weaknesses, potentially leading to lateral movement via attacking other hosts on the

network.

Malware that installs itself inside the container tool VM will likely go undetected by anti-malware soft-

10

ware on the host. This is because the VM acts like a black box, keeping anti-malware software on the
host from seeing what’s happening inside of it.

In addition, malware in the VM would survive a restart because the VM’s storage remains untouched.
And if the user disables updates, the malware could live in the machine for long periods of time, unde-
tected.

These security limitations are true for Docker Desktop as well as all other container development plat-
forms in the market that don’t have enterprise-level security and IT/system administrators features.

Even “rootless” container runtimes (where the container engine runs without root privileges) are not
immune to this because:

• They don’t prevent users from tampering with security settings (e.g., developers can trivially disable the

rootless feature).

• They don’t offer proper isolation between the containers and the container engine inside the VM. Root-

less runtimes normally run the containers and container engine in the same Linux user-namespace, so

while they help isolate the container from the Linux kernel, they don’t prevent containers from accessing

the container engine, a prime target for attackers.

In companies with stringent security requirements, this le -
panies often need a mechanism for IT/system admins to enforce security settings on the container

won’t be easily bypassed by developers or malicious containers.

Hardened Docker Desktop: Stronger Security for
Enterprises

enterprises.

To address this, Docker Desktop 4.13 introduces “Hardened Docker Desktop” (HDD), a new set of secu-
rity features for Docker Desktop that overcomes these limitations, and does so in a way that is trans-
parent to developers and doesn’t impact their productivity, velocity, and experience.

Hardened Docker Desktop gives IT admins a simple, powerful, and centralized way to secure Docker
Desktop deployments across the entire company. It also hardens container isolation to make it much
more difficult to breach the Docker Desktop Linux VM and the underlying host.

With HDD, developers can continue to work with Docker Desktop as usual (including running privileged
containers) knowing that their Docker Desktop deployment is running much more securely.

This ultimately improves the company’s security posture and protects against security vulnerabilities
introduced by users or malicious code. Hardened Docker Desktop is only available for Docker Business
customers.

11

What’s Included?

Hardened Docker Desktop includes the following features:

• Settings Management

• Enhanced Container Isolation (ECI)

• Registry Access Management

• Image Access Management

Settings Management

Settings Management allows IT/system admins to preset and “lock” several Docker Desktop configu-
rations on a developer’s machine. Once set, admins can have confidence that those configurations will
not be altered by their developers. This is because only the IT/system admin will have admin rights into
the developer’s workstation. These configurations include:

• Proxy

• Container registries

• Host files shared with containers

• Docker Engine configurations

• Kubernetes settings

• Enhanced Container Isolation

• Software updates

• More planned in future Docker Desktop releases.

Administrators can get started by creating a file called “admin-settings.json” which contains the desired
set of settings the admin wishes to preset and lock. Figure 3 below shows a simple example of this file
(many more settings are possible).

Figure 3. Sample “admin-settings.json” file used for Settings Management.

12

This file resides in the computer where Docker Desktop is installed, in a directory that is only accessible
with local admin rights on the machine. When Docker Desktop starts, it looks for that file and locks the
appropriate settings. Developers will see those locked settings in the Docker Desktop GUI and won’t be
able to modify them, as shown in Figure 4.

Figure 4. Docker Desktop UI showing settings locked by Admins.

Settings Management enables mandatory access control (MAC) on Docker Desktop settings (as op-
posed to the baseline discretionary access control). Read more in the Settings Management documen-
tation.

Enhanced Container Isolation (ECI)

Enhanced Container Isolation (ECI) hardens the security of containers inside the Docker Desktop Linux
VM by running them unprivileged (i.e., root user in the container maps to an unprivileged user inside the
VM) to prevent them from taking control of the VM. Even containers launched with the “--privileged” flag
are protected this way.

This significantly hardens container isolation and prevents containers from bypassing Docker Desktop
registry configurations, accessing sensitive data or secrets stored in the VM, accessing the Docker En-
gine, peeking into other containers, or attacking the host machine. In addition, several CVEs related to
container escapes (e.g. CVE 2019-5736, CVE 2022-0492, CVE 2021-30465) are blocked by ECI.

ECI uses several advanced and unique techniques to do this:

• Running all containers unprivileged (Linux user namespace).

• Restricting users from exposing directories in the Linux VM inside the container.

https://docs.docker.com/desktop/hardened-desktop/settings-management/
https://docs.docker.com/desktop/hardened-desktop/settings-management/

13

• Preventing backdoor access to the Docker Desktop VM (e.g., debug console).

• Vetting sensitive system calls such “mount” in the container to ensure they don’t result in container

breakouts.

• -

tainer from the underlying Linux kernel.

Figure 5 below illustrates this.

ECI is a critical component of Hardened Docker Desktop, as it ensures the Docker Desktop Linux VM
can’t be easily subverted by Docker Desktop users or malicious containers. ECI can be enabled and en-

ECI is unique to Docker Desktop, and goes well beyond just using the Linux user namespace (as root-
less features in other container runtimes do). Rather, it uses the Linux user namespace as a baseline
for isolation but complements this with the advanced techniques listed above to harden container
isolation. Read more in the Docker Desktop documentation.

Figure 5. Enhanced Container Isolation makes it much harder for containers t

Host Machine (Win/Mac/Linux)

o breach the Docker Desktop Linux VM.

Registry Access Management

Registry Access Management allows admins to control which online registries Docker Desktop can pull
or push artifacts from (e.g., container images).

Registry Access Management plays a key role in preventing malware and supply chain attacks (such
as those recently discovered by Aqua [5] and SysDig [6]) since it ensures developers can only pull con-
tainer images from authorized, vetted registries. Without this feature, developers may pull images from
untrusted registries at their discretion, putting the security of your company at risk.

User namespace

Restricted

Access

No

Access

Stronger container isolation

(Linux user-name space + more).

Prevents malicious containers

from breaching the Docker

Desktop VM.

Prevents users from relaxing

security settings inside the

Docker Desktop VM.

https://docs.docker.com/desktop/hardened-desktop/enhanced-container-isolation/

14

Registry Access Management is configured by administrators via Docker Hub. Refer to the Docker
Desktop documentation for more information.

Image Access Management

Image Access Management allows organizations to control which types of images their developers
can pull from Docker Hub (e.g., Docker Official Images, Docker Verified Publisher Images, Community
images).

For example, a developer who is building a new containerized application could accidentally use an un-
trusted community image as a component of their application. This image could be malicious and pose
a security risk to the company. Using Image Access Management, the organization owner ensures that
the developer can only access trusted content like Docker Official Images, Docker Verified Publisher
Images, or the organization’s own images, mitigating such a risk.

https://docs.docker.com/desktop/hardened-desktop/registry-access-management/
https://docs.docker.com/desktop/hardened-desktop/registry-access-management/

15

Hardened Docker Desktop Threat Mitigation

This section outlines how Hardened Docker Desktop (HDD) addresses the security threats described in
the “Security Risks” section above.

The features of Hardened Desktop (Registry Access Management, Image Access Management, Set-
tings Management, and Enhanced Container Isolation (ECI)) operate independently of each other, but
when used together can create a defense-in-depth approach to securing developer workstations.

Defense-in-depth means that these mechanisms defend against attacks at different functional layers
-

es, etc.), as described below.

Figure 6 illustrates how Hardened Desktop mitigates threats.

Figure 6. Hardened Desktop Threat Mitigation

Inject malicious code
into SCM

Access to
SCM with the
developers
permission

Unprotected
credentials used

for the SCM present
on the host filesystem

Subvert code review
processExfiltrate source code

Download
malware to host

Access to host
filesystem

Host filesystem
mounted in VM

Mitigated by Enhanced
Container Isolation

Registry Access Management
prevents pulling images from

untrusted registries

Docker Desktop updates ensure
that the VM has the latest Linux

Kernel security patches

Can be disallowed through
Settings Management

Enhanced Container Isolation
prevents this from leading to

container escape

Container
escape through

misconfiguration

Run a container with
elevated privileges or
sensitive VM mounts

Run
malicious
container

Developer
inadvertently

pulls malicious
container image

Load malicious image
from tar archive

Container engine API
exposed on network

without authentication

User visits
malicious URL

Access exposed
container engine

API from inside
a container

User visits
malicious URL

Exploit
exposed

container
engine API

Kernel
exploitation

Kernel vulnerability

Container
escape
to VM

Download
malware to VM

Extract secrets from
host filesystem

Changes to host
filesystem

Unauthorized
access/exfiltration of

data

Compromise the
integrity of subsequent
container runs or builds

Interact with local
network on behalf of

the host

Access to
container

registries as
the user

Exfiltrate images form
private repositories

Push poisoned image
into repository

16

Mitigating Malware with HDD

IT administrators can use Registry Access Management and Image Access Management to restrict
which container registries and image types developers can access for pushing and pulling container
images. This significantly reduces the probability that container images will have malicious payloads.
Developers can’t bypass this setting.

In addition, with ECI enabled, even if a container with a malicious payload runs, it’s much harder for that
container to breach the Docker Desktop Linux VM (and from there the host) because the container runs
without root privileges inside a Linux user namespace. The container is also restricted from accessing
any files inside the Linux VM or from accessing the Docker Engine. Even if users run containers with
elevated privileges (e.g., “--privileged” or “--cap-add=ALL”), the container is prevented from breaching the
Linux VM.

Securing against Supply Chain Attacks with HDD

Registry Access Management and Image Access Management restricts the registries and image types
that developers can pull from. This reduces the probability of supply chain attacks caused by corrupt
images.

If a malicious package is inadvertently installed in the container, ECI prevents the malicious package
from running as root inside the Docker Desktop Linux VM and from accessing the Docker Engine within
it, creating another layer of defense.

Finally, Settings Management allows administrators to lock settings and prevent users from changing
them. This includes locking Docker Desktop’s proxy settings and ensuring that ECI is always enabled.

Avoiding Misconfigurations with HDD

IT admins can use Settings Management to configure and lock settings on local Docker Desktop instal-
lations. That includes fixing the proxy settings, enabling ECI, preventing users from exposing the unpro-
tected Docker API on the host’s network, enabling software updates, etc.

IT Admins can choose to lock whatever settings are appropriate according to company policy, and de-
velopers can’t modify them.

In addition to Settings Management, IT admins can leverage Registry Access Management and Image
Access Management to configure which container registries and image types developers can access.
This prevents developers from misconfiguring these important settings.

Addressing Insider threats with HDD

IT admins can use Settings Management to lock Docker Desktop settings and prevent malicious insid-
ers from changing these to bypass organization’s security policies.

17

In addition, ECI prevents malicious insiders from leveraging containers to gain control of the Docker
Desktop Linux VM. The VM’s debug console is also disabled, closing another entry route otherwise
available to malicious insiders.

The table below summarizes the threats and threat mitigation features.

Category Threat / Vulnerability Mitigation Tactic
Other Container Dev

Tools
Docker Desktop

Hardened Docker
Desktop

Container
Malware

Host Attack Run containers in
a Linux VM, config
host file sharing.

Linux VM Attack Prevent containers
from accessing
Linux VM. (ECI)

Container Engine
Attack

Prevent containers
from accessing the
container engine. (ECI)

Cross-Container
Attack

Strong cross-con-
tainer isolation.

(ECI)

Supply Chain
Attacks

Unrestricted con-
tainer registry
access

Registry Access
Management

(easy for developers to
bypass)

(easy for developers
to bypass)

(can’t be by-
passed)

Unrestricted image
type access

Image Access Man-
agement

Misconfiguration

Developer relaxes
security setting in
container tool GUI

Settings Manage-
ment

Developer relaxes
security setting in-
side the Linux VM

Prevent developer
access to the Linux
VM (via containers
or directly)

Host Admin Rights
Requiring host
admin rights to run
containers

Allow regular users
to run containers

18

Hardened Docker Desktop Roadmap

In addition to what’s currently included in HDD, Docker plans on building more features that will further
secure developer environments.

Roadmap Feature Description

Enabling Enhanced Container Isolation on Docker
Desktop Kubernetes Pods.

Better secures the Kubernetes dev cluster available
in Docker Desktop.

Enabling Enhanced Container Isolation on Docker
Desktop Extensions.

Better secures Extension containers.

Enabling Enhanced Container Isolation on Docker
Desktop Dev Environments.

Better secures Dev Environment containers.

Supporting Hardened Desktop on Windows
Subsystem for Linux 2 (WSL2)

Add support for Hardened Desktop on WSL2, with
the caveat that WSL2 is by design less secure than
Hyper-V.

Conclusion

Cyber security threats continue to grow and attacks increasingly target developer environments. Such
threats, if not mitigated, can result in a breach, bringing severe financial, legal, and reputational conse-
quences to companies.

As attackers evolve their tactics, techniques, and procedures, companies need to do the same with
their defenses. Investing in solutions that can proactively fend off these attacks while giving developers
the flexibility to continue using the tools they love, is a must.

Container development platforms such as Docker Desktop and others present unique security chal-
lenges since developers use them to constantly pull container images from the internet and run them in
local environments.

While Docker Desktop provides strong baseline security features (e.g., running containers inside a Linux
VM to isolate them from the underlying host), enterprises that operate at scale or under strictly regulat-
ed environments require more.

Hardened Docker Desktop, included in the Docker Business subscription, is an enterprise-ready solution
that hardens security in your developer’s environments, without impacting your developer productivity
and experience.

All of the features in Hardened Docker Desktop - Settings Management, Enhanced Container Isolation,
Registry Access Management, and Image Access Management - work in conjunction to secure the
developer workstation from the start. So you will have peace of mind that your developers are staying
compliant and protecting your company from threats, while at the same time enjoying the productivity
and innovation made possible by Docker.

19

Learn More

Hardened Docker Desktop Online Documentation.

References

[1] Verizon Data Breach Investigation Report, 2022
[2] https://www.trendmicro.com/en_us/what-is/container-security.html
[3] https://www.aquasec.com/cloud-native-academy/supply-chain-security/software-supply-chain-attacks/
[4] https://www.trendmicro.com/vinfo/it/security/news/virtualization-and-cloud/malicious-docker-hub-container-imag-
es-cryptocurrency-mining
[5] https://blog.aquasec.com/supply-chain-threats-using-container-images
[6] https://sysdig.com/blog/triaging-malicious-docker-container/
[7] https://www.bleepingcomputer.com/news/security/npm-supply-chain-attack-impacts-hundreds-of-websites-and-apps/
[8] https://www.ibm.com/reports/data-breach
[9] https://github.com/OWASP/Docker-Security
[10] https://snyk.io/blog/detect-prevent-dependency-confusion-attacks-npm-supply-chain-security

https://docs.docker.com/desktop/hardened-desktop/
https://www.trendmicro.com/en_us/what-is/container-security.html
https://www.aquasec.com/cloud-native-academy/supply-chain-security/software-supply-chain-attacks/
https://www.trendmicro.com/vinfo/it/security/news/virtualization-and-cloud/malicious-docker-hub-container-images-cryptocurrency-mining
https://www.trendmicro.com/vinfo/it/security/news/virtualization-and-cloud/malicious-docker-hub-container-images-cryptocurrency-mining
https://blog.aquasec.com/supply-chain-threats-using-container-images
https://sysdig.com/blog/triaging-malicious-docker-container/
https://www.bleepingcomputer.com/news/security/npm-supply-chain-attack-impacts-hundreds-of-websites-and-apps/
https://www.ibm.com/reports/data-breach
https://github.com/OWASP/Docker-Security
https://snyk.io/blog/detect-prevent-dependency-confusion-attacks-npm-supply-chain-security

