
ADMIN
Network & Security

w w w . a d m i n - m a g a z i n e . c o m

A
D

M
IN

N
e
tw

o
rk

 &
 S

e
cu

ri
ty

Secure CI /CD A
zure A

rc Cloudflare Tunnels A
nsible Container M

anagem
ent M

onit N
ew

 in Ceph G
EN

EVE BeagleV-A
head RISC-V Fluentd M

ikroTik Project Kepler O
penN

M
S Flow

s

Cloudflare
Tunnels

Issue 77

A
d

m
In

 m
A

g
A

z
In

e

 Is
s

u
e

 7
7

Secure CI/CD

 Pipelines
Best practices for better DevOps security

Secure CI/CD Azure Arc

FREE DVD

Cloudflare Tunnels
VPN alternative for
secure server access

MikroTik: Affordable routers
with professional powers

Fluentd and Fluent Bit
Unified log collection

BeagleV-Ahead RISC-V CPU
Latest SBC in the
BeagleBone family

Ansible Container Management

Monit: Proactive healing
for *nix servers

Azure Arc: Multicloud on-premises
management platform

GENEVE Tunneling Protocol
Improved flexibility and scalability

What’s New in Ceph

SPECIAL

https://www.docker.com/
https://www.admin-magazine.com

Docker makes it easy for developers
to deploy applications and ensure that
the local development environment
is reasonably close to the staging and
production environments. Remember
the times you found a great app only
to discover the installation instructions
extended over several pages and in-
volved configuring the database, popu-
lating tables, installing many packages

and corresponding libraries – and then
because of a tiny glitch in the docs,
things didn’t work as expected?
Thanks to Docker, these days are
mostly over. You can develop your
app and test it locally and then
deploy it to the testing and produc-
tion environments with few or no
changes. But Docker itself is not
enough. Modern apps rarely consist

of just one container. If you have
more than one container, you need
a way to organize them that is trans-
parent to your users. In other words,
you need a container orchestration
platform. The unquestioned leader in
orchestration is Kubernetes (K8s for
short). It is easy to get started with
Kubernetes if you have Docker Desk-
top installed. Simply go to Settings |
Kubernetes and select Enable Kuber-
netes (Figure 1). Enabling Kubernetes
from Docker Desktop gets you a one-
node cluster suitable for local testing
and experiments.

Listing 1: my-app/ nginx/ nginx.conf

01 events {
02 worker_connections 1024;
03 }
04 http {
05 server {
06 listen 80;
07 location / {
08 proxy_pass http://webapp:5000;
09 }
10 }
11 }

Figure 1: Enabling Kubernetes in Docker Desktop. Ph
ot

o
by

 A
le

x
Ko

nd
ra

ti
ev

 o
n

Un
sp

la
sh

The built-in single-node Kubernetes cluster included with Docker
Desktop is a handy tool for testing your container. By Artur Skura

Test your containers with the
Docker Desktop one-node cluster

 Test Lab

2 A D M I N 77 w w w. A D M I N - M AgA z I N e .co M

To o l s Docker Desktop Local cluster

https://www.admin-magazine.com

Single-node clusters are quite useful
for testing, and the single-node Ku-
bernetes cluster bundled with Docker
Desktop is pre-configured and ready
to use. Along with this single-node
cluster (called “Kubernetes server” in
Docker docs), Docker Desktop also
includes the kubectl command-line
tool (called “Kubernetes client”).
Because kubectl is already set up to
work with the cluster, you can start
issuing commands straight away
without additional configuration.

About Kubernetes

Many people say they would like to
start learning Kubernetes, but they
somehow get stuck at the first phase,
that is, the installation. The problem
is, administering a Kubernetes cluster
and developing software that runs on
it are two different tasks that are often
handled by different teams. Installing,
upgrading, and managing the cluster
is usually done by the Ops or DevOps
team, whereas the development is
usually done by developers. Using a
single-node cluster, developers can
take the first steps with verifying that
the containerized application works in
Kubernetes before passing it on to Ops
for further implementation.

Kubernetes cluster. I will create a
docker‑compose.yml file that sets up
a web application stack consisting
of an Nginx reverse proxy, a Python
Flask web application, and a Redis
database. In the root directory of your
project (let’s call it my‑app), create

Kubernetes is a complex beast, and it
might be confusing to present its archi-
tecture in detail, so I’ll focus on the es-
sentials. For starters, it’s enough to re-
member two concepts: nodes and pods.
Nodes normally correspond to virtual
(or, less often, bare metal) machines on
which pods are running. Pods, on the
other hand, correspond to sets of con-
tainers, and they are running in nodes.
One node can contain several pods.
One pod cannot run on more than one
node – instead, you create replicas of
the pod using so-called deployments.
A typical Kubernetes cluster has several
nodes with one or more pods running
on each node. When one node fails,
the pods that had been running on it
are considered lost and are scheduled
by the cluster to run on other, healthy
nodes. All this happens automatically
when you use a deployment. Kuber-
netes is therefore a self-healing plat-
form for running containerized apps.
Even on the basis of this simplified
description, you can understand why
Kubernetes took the world by storm.

A Multi-Container Example
A simple example will show how easy
it is to test your Docker containers
using Docker Desktop’s single-node

Listing 2: my-app/ nginx/ Dockerfile
01 FROM nginx:alpine
02 COPY nginx.conf /etc/nginx/nginx.conf

Listing 3: my-app/ webapp/ app.py

01 from flask import Flask
02 import redis
03 import os
04
05 app = Flask(__name__)
06 redis_host = os.getenv("REDIS_HOST", "localhost")
07 r = redis.Redis(host=redis_host, port=6379, decode_

responses=True)
08
09 @app.route('/')
10 def hello():
11 count = r.incr('counter')
12 return f'Hello, you have visited {count} times.'
13
14 if __name__ == '__main__':
15 app.run(host="0.0.0.0", port=5000)

Listing 4: my-app/ webapp/ Dockerfile

01 FROM python:3.11
02 WORKDIR /app
03 COPY . .
04 RUN pip install Flask redis
05 CMD ["python", "app.py"]

Listing 5: my-app/ docker-compose.yml

01 services:
02 nginx:
03 build: ./nginx
04 ports:
05 ‑ "8080:80"
06 depends_on:
07 ‑ webapp
08 webapp:
09 build: ./webapp
10 environment:
11 ‑ REDIS_HOST=redis
12 depends_on:
13 ‑ redis
14 redis:
15 image: "redis:alpine"
16 volumes:
17 ‑ redis‑data:/data
18
19 volumes:
20 redis‑data:

Do I Need cri-dockerd?

Kubernetes was built around the Docker

Engine container runtime, and the early ver-

sions of Kubernetes were fully compatible

with Docker Engine. Docker Engine is a full-

featured runtime with many features for sup-

porting end users and developers – and even a

system for integrating third-party extensions.

In many cases, developers don’t need all the

functionality provided by Docker Engine and

just want a much simpler runtime. Kubernetes

implemented the Container Runtime interface

(CRI) in 2016 as a universal interface to sup-

port other container runtimes. Docker contrib-

uted the code for a simpler, more elementary

container runtime called containerd, which

is compatible with CRI. Containerd is now

maintained by the Cloud Native Computing

Foundation.

Containerd works for many common scenarios

today, but some users still prefer the more

robust Docker Engine, with its user interface

features and support for extensions. Because

Docker Engine was developed before CRI, it

does not fit directly with the CRI interface.

Kubernetes implemented a temporary adapter

called dockershim to support Docker Engine

on CRI-based Kubernetes installations. Dock-

ershim was deprecated in Kubernetes 1.20 and

removed in version 1.24.

A new adapter called cri-dockerd now

provides “fully conformant compatibility

between Docker Engine and the Kubernetes

system.” If you are running Kubernetes 1.24

or newer with containerd, you won’t have

to worry about compatibility. However, if

you want to continue to use the Docker

Engine runtime, you might have to replace

dockershim with the cri-dockerd adapter. Cri-

dockerd is included with Docker Desktop, so

you won’t need to worry about cri-dockerd to

access Docker Desktop’s single-node Kuber-

netes cluster.

3A D M I N 77w w w. A D M I N - M AgA z I N e .co M

To o l sDocker Desktop local Cluster

https://www.admin-magazine.com

two folders: nginx and webapp. The
nginx directory will contain a Nginx
configuration file nginx.conf (Listing 1)
with a Dockerfile (Listing 2); the
webapp directory will contain a Flask
app app.py (Listing 3) and the cor-
responding Dockerfile (Listing 4). In
this way, I will build two images: one
containing the Flask app and another
with Nginx. The user will connect to
a Nginx instance, which will commu-
nicate with the Flask app. The app,
in turn, will use the Redis in-memory
storage tool as a simple store for
counting users’ visits.
The key part that glues everything
together is the docker‑compose.yml file

(Listing 5). It defines three services
and one volume. You might ask why
three services since we only prepared
two Dockerfiles? The two Docker-
files are custom images, whereas
the Redis image is a standard image
(redis:alpine) without any modifica-
tions, so you don’t even need to create
a Dockerfile for it – you can instead
use the ready-made image directly

with the image directive. Docker Com-
pose makes it easy to start and build
the whole infrastructure:

docker compose up ‑‑build

This command will first build the three
Docker images (Figure 2) and then run
the resulting containers (Figure 3) in
the correct order: As you will notice in

Figure 2: Building images with Docker Compose.

Figure 3: Running containers with Docker Compose.

Figure 4: The Flask app correctly counting user visits.

4 A D M I N 77 w w w. A D M I N - M AgA z I N e .co M

Docker Desktop Local ClusterTo o L s

https://www.admin-magazine.com

of the actual Nginx container. This
approach has many advantages. For
example, I can reconfigure Nginx
dynamically, and Kubernetes will

ConfigMap resource for Nginx (List-
ing 12). Deployments define, among
other things, what containers and
volumes should run and how many
of replicas should be created. A
ConfigMap is another type of re-
source used for configuration.
Kubernetes will not build images.
You need to have them already built
and pass them to deployments as
arguments of the image directive. In
the case of Redis, I am not modify-
ing the official image and can use it
directly.
With Nginx, things get a bit more
complex because I need to adapt
the default configuration. Fortu-
nately, I don’t have to modify the
image this time and can use another
Kubernetes resource: ConfigMap.
ConfigMap will allow me to man-
age the configuration independently

docker‑compose.yml, the redis service,
even though defined last, needs to
run first because webapp depends on it,
whereas nginx has to start last because
it depends on webapp already running.
The Flask app should be available on
localhost:8080 and working as intended
(Figure 4). (By the way, you might no-
tice that I am using docker compose, a
new command integrated with Docker
Desktop, called Compose V2, instead
of the legacy Compose V1 command
docker‑compose. Unless you have a good
reason to use V1, you should always
use V2 as V1 is not receiving updates.)
As a side note, if you are planning on
using the Docker Engine runtime with
Kubernetes, see the sidebar entitled
“Do I Need cri-dockerd?”

Migrating to Kubernetes
This brings me to the
main topic: How do I
migrate the preceding
example to Kubernetes?
Because the app is already
containerized, the migra-
tion should be very easy.
In real life, DevOps engi-
neers need to deal with
legacy apps written for a
monolithic architecture.
Although this architecture
is not inherently bad, if
you want to leverage the
power of containers, it be-
comes an obstacle. Some
organizations go to the
other extreme and rewrite
everything using microser-
vices, which might not be
the optimal choice in all
cases. What you need are
logical components that
you can develop and de-
ploy fairly independently
and that will still work
together well.
The Docker Compose file
defined three services,
so I need one Kubernetes
Service file for each
(Listings 6-8). In addi-
tion, I also need to cre-
ate a deployment file for
each (Listings 9-11) and a

Listing 8: my-k8s-app/redis-service.yaml

01 apiVersion: v1
02 kind: Service
03 metadata:
04 name: redis
05 spec:
06 ports:
07 ‑ port: 6379
08 selector:
09 app: redis

Listing 7: my-k8s-app/ webapp-service.yaml

01 apiVersion: v1
02 kind: Service
03 metadata:
04 name: webapp
05 spec:
06 ports:
07 ‑ port: 5000
08 selector:
09 app: webapp

Listing 9: my-k8s-app/ nginx-deployment.yaml

01 apiVersion: apps/v1
02 kind: Deployment
03 metadata:
04 name: nginx
05 spec:
06 replicas: 1
07 selector:
08 matchLabels:
09 app: nginx
10 template:
11 metadata:
12 labels:
13 app: nginx
14 spec:
15 containers:
16 ‑ name: nginx
17 image: nginx:alpine
18 ports:
19 ‑ containerPort: 80
20 volumeMounts:
21 ‑ name: nginx‑config
22 mountPath: /etc/nginx/nginx.conf
23 subPath: nginx.conf
24 volumes:
25 ‑ name: nginx‑config
26 configMap:
27 name: nginx‑config

Listing 6: my-k8s-app/ nginx-service.yaml

01 apiVersion: v1
02 kind: Service
03 metadata:
04 name: nginx
05 spec:
06 ports:
07 ‑ port: 8080
08 targetPort: 80
09 selector:
10 app: nginx

Listing 10: my-k8s-app/ webapp-deployment.yaml

01 apiVersion: apps/v1
02 kind: Deployment
03 metadata:
04 name: webapp
05 spec:
06 replicas: 1
07 selector:
08 matchLabels:
09 app: webapp
10 template:
11 metadata:
12 labels:

13 app: webapp

14 spec:

15 containers:

16 ‑ name: webapp

17 image: YOUR‑DOCKER‑IMAGE # This needs to be

built and pushed, see instructions below

18 env:

19 ‑ name: REDIS_HOST

20 value: "redis"

21 ports:

22 ‑ containerPort: 5000

5A D M I N 77w w w. A D M I N - M AgA z I N e .co M

To o l sDocker Desktop local Cluster

https://www.admin-magazine.com

propagate changes to all the pods.
Also, I can use the same Nginx con-
tainer in different environments and
only the ConfigMap will change.
Versioning also works better with a
ConfigMap than with a container.
In the nginx‑deployment.yaml file
(Listing 9), the ConfigMap is
mounted into the Nginx container at
the /etc/nginx/nginx.conf path. This
replaces the default Nginx configura-
tion file with the file defined in the
ConfigMap. Using a ConfigMap would
make little sense for the Flask app, so
I need to build the image first, upload
it to a container registry, and then
pass its name as image in the deploy-
ment. In order to do so, I need to first
create an account on Docker Hub or
another container registry. Then go to
the my‑app/webapp directory used ear-
lier with Docker Compose and build
the image, for example, as flaskapp:

docker build ‑t flaskapp .

Now log in to your registry. For
Docker Hub, I will use:

docker login ‑‑username=your‑username

The next stage is tagging:

docker tag flaskapp:latest U
 YOUR_USERNAME/flaskapp:latest

At this point, you can push the image
to the registry:

docker push YOUR_USERNAME/U
 flaskapp:latest

In the two last commands, replace
YOUR_USERNAME with your actual user
name. Now, replace the image:
YOUR‑DOCKER‑IMAGE in Listing 10 with
YOUR_USERNAME/flaskapp:latest so that
Kubernetes is able pull your container
from the Docker Hub and use it for
deployment.
At this point, I am ready to apply all
the configurations. I will create the
necessary infrastructure and run the
containers (Listing 13).
When you run the kubectl get pods
command, you should see the pods
running (Listing 14).

You can also use the kubectl get com-
mand to get information on deploy-
ments, services, and ConfigMaps. In
order to actually use the app, type the
following command:

kubectl port‑forward svc/nginx 8080:8080

And, as before, visit localhost:8080 –
you should see the same Flask app
as deployed earlier with Docker
Compose, the only difference being
that now it is running on Kubernetes.
Congratulations – you have built
and deployed your first application
on the local one-node Kubernetes
cluster! Now, the magic lies in the
fact that you can perform the same
sequence of kubectl apply com-
mands in the production environ-
ment, for example in EKS on AWS,
and the app will run exactly as it
should. In practice, there are a few
differences, such as making the app
available to the external world us-
ing a load balancer, storing secrets,
storage options, and so on, but
these are more related to the inter-
action of Kubernetes with the ex-
ternal environment – the app itself
stays the same.

Conclusion

The local Kubernetes cluster distributed
with Docker Desktop lets you learn
the basics of Kubernetes – creating
pods, deployments, services, and
ConfigMaps – and also test the deploy-
ment locally before pushing it to stag-
ing and production environments. n

01 apiVersion: apps/v1
02 kind: Deployment
03 metadata:
04 name: redis
05 spec:
06 replicas: 1
07 selector:
08 matchLabels:
09 app: redis
10 template:
11 metadata:
12 labels:
13 app: redis
14 spec:
15 containers:
16 ‑ name: redis
17 image: redis:alpine
18 ports:
19 ‑ containerPort: 6379

Listing 11: my-k8s-app/ redis-deployment.yaml

01 apiVersion: v1
02 kind: ConfigMap
03 metadata:
04 name: nginx‑config
05 data:
06 nginx.conf: |
07 events {
08 worker_connections 1024;
09 }
10
11 http {
12 server {
13 listen 80;
14
15 location / {
16 proxy_pass http://webapp:5000;
17 }
18 }
19 }

Listing 12: my-k8s-app/ nginx-configmap.yaml

Author

Artur Skura is a senior DevOps engineer cur-

rently working for a leading pharmaceutical

company based in Switzerland. Together with a

team of experienced engineers, he builds and

maintains cloud infrastructure for large data sci-

ence and machine learning operations. In his free

time, he composes synth folk music, combining

the vibrant sound of the 80s with folk themes.

kubectl apply ‑f nginx‑configmap.yaml
kubectl apply ‑f redis‑deployment.yaml
kubectl apply ‑f redis‑service.yaml
kubectl apply ‑f webapp‑deployment.yaml
kubectl apply ‑f webapp‑service.yaml
kubectl apply ‑f nginx‑deployment.yaml
kubectl apply ‑f nginx‑service.yaml

Listing 13: Applying the configurations

NAME READY STATUS RESTARTS AGE
nginx‑794866d4f‑9p5q4 1/1 Running 0 13s
redis‑84fd6b8dcc‑7vzp7 1/1 Running 0 36s
webapp‑b455df999‑bn58c 1/1 Running 0 25s

Listing 14: Viewing the Running Pods

This article was made possible by
support from Docker through Linux
New Media’s Topic Subsidy Program
(https://www.linuxnewmedia.com/
Topic_Subsidy).

6 A D M I N 77 w w w. A D M I N - M AgA z I N e .co M

Docker Desktop Local ClusterTo o L s

https://www.linuxnewmedia.com/Topic_Subsidy
https://www.linuxnewmedia.com/Topic_Subsidy
https://www.admin-magazine.com

